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Abstract 

The cost of an induction linac for heavy ion fusion (HIF) may be reduced if the number of channels in the main 
accelerator is reduced. There have been proposals to do this by merging beamlets (perhaps in groups of four) after 
a suitable degree of preacceleration. This process, which results in r.m.s, emittance growth, occurs in two stages. 

The first stage occurs instantly when the beamlets, no longer separated by electrodes, enter the merging region. At 
this point one has a collection of beamlets whose centers are displaced from the central axis by distances 6xi, 6yi. The 
mean square emittance, now calculated for the whole collection, is 2 _ _  2 2 Exi--Exl + (g2)Vx and similarly for the y 
direction. Here ex~ is the emittance of one undisplaced beamlet, Vx is the r.m.s, thermal velocity and Exi is the initial 
emittance of the composite beam. This first stage of emittance growth is easy to calculate and has obvious scaling 
properties. 

The second stage of merged beam emittance growth mostly occurs in about one-quarter of a plasma period, 
although the full development may take much longer. In this stage, space charge forces cause transverse accelerations. 
The maximum increase in mean square emittance is proportional to the excess electrostatic energy (free energy) in the 
array when the merging begins. It tends to dominate the first stage for strongly depressed initial tunes. The relatively 
complex calculations involving the second stage are the main concern of this paper. 

In some designs it may be desirable to reduce the emittance growth below that produced by a basic 2 x 2 array. 
For this a general understanding of the free energy is helpful. Therefore we investigate three factors affecting the 
normalized free energy U, of an array of charged interacting beamlets: (1) the number of beamlets N in the array; 
(2) the ratio q of beamlet diameter to beamlet center spacing; (3) the shape of the array. For circular arrays we obtain 
an analytic expression for Un as a function of N and ~/. If q is held constant, it shows that Un ~ N -  l in the large-N 
limit, i.e. U, would become arbitrarily small in this idealized case. We show that this is not true for square or 
rectangular arrays, which have larger free energy with a lower limit determined by the non-circular format. Free 
energy in square arrays can be reduced by omitting corner beamlets; in the case of a 5 x 5 array the reduction factor 
is as large as 3.3. 

1. Introduction 

Free space charge field energy leads to emit- 
tance growth,  a fact known since the pioneering 

t Also affiliated with Particle Beam Consultants, 2910 Ben- 
venue Avenue, Berkeley, CA 94705, USA. 

analysis by Lapostolle [1] and utilized by Lee et 
al. [2] in another  early contribution.  Free energy 
exists if the initial charge distrubution is non-uni-  
form, which is always the case for merging beam- 
lets. Celata et al. [3] analyzed the free energy of  a 
system of  four  beamlets located symmetrically 
within a conduct ing pipe. More  recently, Lee [4] 
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analyzed the general case of  N non-overlapping 
round beamlets with arbitrary radii, currents and 
positions. He also obtained an approximation for 
the case where the conducting pipe is several times 
larger than the array of N beamlets. With the 
beamlet radii ai, charges per unit length 21, posi- 
tions ai and array center of mass a c -  (Z~ 2~) , 
£, 2fli, Lee wrote a 2 (twice the mean square ra- 
dius of  the total array) as 

a~ = 2~ ~ [,~i(a~ + 2 ~  - 232)] (1) 
i 

and found free energy 

1 { ~  ln (ax ]  

--~j~<j.~i.~jI~-i-ln("cJia~Jl2)l } (2) 

Ur is the difference between the initial field energy 
and the field energy of a single uniform beam with 
the same total current and mean square radius. 

We make further analytical progress in Section 
2 by specializing Lee's result to the case of  identi- 
cal beamlets all with the same current and radius. 
This simplification leads to a clear understanding 
of how the final emittance depends on the initial 
beam parameters. 

Section 3 analyzes the case of  circular arrays, 
proposed for magnetic fusion injectors [5]. We 
show that the normalized free energy U,-+ 
4 N -  ,[3 _ ln(3~/) + 3t/2] as N becomes large. This 
expression is useful even for moderate values of  N 
(e.g. 19). It shows that for a fixed radial occu- 
pancy factor r/ the normalized free energy be- 
comes lower with increasingly fine subdivision. (In 
a heavy ion fusion (HIF) combiner with a practi- 
cal lower limit to the beamlet spacing, this could 
not be continued indefinitely, of  course.) In terms 
of the number M of rings of beamlets, U, ~ M -  2 
for large M, the same proportionality as for the 
case of M sheet beams [6]. 

Square arrays (Section 4), sometimes proposed 
for HIF,  have configurational free energy which is 
shown to limit the effect of  subdivision and pre- 
vent 1/N scaling. In Section 5 we point out that if 
a square format is mandated in a large array (e.g. 
5 x 5), then a significant reduction in emittance 

growth may be obtained by omitting corner 
beamlets. 

2. Merging identical beamlets 

In the practical case where all N beamlets have 
the same charge per unit length (line charge) 20 
and radius ao, Eq. (1) is a 2 = ao 2 + 2{1• ; -  Oc]2), 
the angle brackets indicating an average over all 
N beamlets. The value of a 2 is independent of the 
choice of  origin and we place the origin at the 
center of mass: 

a~ = a 2 + 2(6 2) = a 2 + 2(x 2 +y2) (3) 

We write the total line charge as N20 = A and also 
rearrange terms, so that Eq. (2) becomes 

U f  = - -  --~ ln\ao/ 
1 ~2. 

N2 ~i  <~i ln(~o~)] (4) 

with the notation 

(~ 2 ~ (X i --  Xj)2 ~_ (Yi - -  y j ) 2  

Note that both logarithms now have a 2 in the 
denominator, which makes the scaling more obvi- 
ous. We see from Eqs. (3) and (4) that Ur is 
invariant to scale, i.e. for a given configuration of  
beamlets, U r just depends on the ratio of beamlet 
spacings to beamlet size. Of course, the potential 
r.m.s, emittance growth will depend on the overall 
scale. 

For emittance growth calculations it is conve- 
nient to replace Ur with the normalized free en- 
ergy Un, which is obtained by dividing Ur by the 
self-field energy within a uniform beam with the 
same r.m.s, radius [7], i.e. Un=4Ur(4,teo/A2). 
Also, the denominators a0 z in (4) can be written 
separately and combined, giving the form used for 
calculations and for further analysis (see Ap- 
pendix A): 

4 (  N - I  l n a o + N l n a ~  
U n = ~  4 

1 In ~ )  
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(Note that U,, like Uf, is invariant to scale; the 
units are irrelevant. Un is also independent of the 
total current.) These equations do not require the 
arrangement of beamlets to possess any symme- 
try or regularity, as long as the beamlets do not 
overlap. In practice a regular arrangement is 
chosen, as in the following sections. 

2. I. Emittance growth 

2 x 2 ( v ~ _  We define r.m.s, emittance by E x -  
X'2), where X and Vx are r.m.s, values of posi- 
tion and velocity respectively. As in Ref. [3], we 
assume X ' =  0 and write E = xV~. The emittance 
of a single beamlet before merging is Ex~ = X~ V~ 
and the initial emittance of the whole array is 

2 ~ 2 2 2 given by Exi Exl~..-((~x>Vx=(X2-~-((~2>)V2: 
there is a corresponding equation for y. The sub- 
sequent emittance growth for a general non-sym- 
metric beam system has been recently analyzed 
[7]. For the special case where the initial com- 
posite beam is matched, centered and properly 
aimed, the final (asymptotic) emittance is 

2 2 _  1 2[/1 Y2"~ 1 2( X, 2) 
E x f - - E . y f - - ~ ' x i  ~ -[- X 2 / ~ - ~ E y i  l ~ y i  2 

-~-Q (x2i Av y2)Un ~-... (6) 

with higher-order terms neglected. In the special 
case Vx = V~, 

ff2f X2i~-Y2/1-------I Q Un ~ 
e zi 2X2i \ + 8 ~ ) + ' " '  

(6a) 

y 3 ©  

! 

Fig. 1. Array with two rings around a central beamlet; N = 19. 
At maximum non-overlapping diameter, most beamlets are in 
contact with others. 

and similarly for y. Q is the total perveance 
2Aq/(4z~e.omvz2). The neglected terms are second 
order in U. and also involve the radii of the 
equivalent elliptical matched beam [7]. From Eq. 

1 2 (3), X 2 + y2 = a2/2 = (~2) + ~ao. Note that the 
Un term dominates if the initial beamlets are 
cool, as in many HIF designs. We calculate Un 
for particular array shapes in the following sec- 
tions and provide further discussion of emittance 
growth in Section 4. 

3. Analytic and calculated results for circular 
array of beamlets 

We use Eq. (5) to investigate the variation in 
Un with N for beamlet arrays of various shapes. 
We start with circular arrays, proposed for large- 
scale magnetic fusion energy applications [5]. A 
prototype with 19 beamlets (in a quasi-circular 
array) was successfully tested at LBNL [5]. 
Among various shapes, circular arrays have the 
lowest configurational free energy [7]. In fact, an 
array of rings in which the number of beamlets 
per ring is proportional to the radius behaves in 
the large-N fixed-r/ limit somewhat like a single 
beam of uniform particle density, with U, = 0 by 
definition. 

Such an array, with uniform center-to-center 
ring spacing Ar, is illustrated in Fig. 1. The 
beamlets will not overlap if 0 < a0 < A r/2. The 
number of beamlets per ring is proportional to 
the ring radius. For maximum azimuthal density 
of beamlets the proportionality factor would be 
2n, but for simplicity we use the factor 6. (There 
is no distinction for N < 91.) In model shown in 
Fig. 1, the number of beamlets 
central beamlet, is related to the 
M by 

N, including the 
number of rings 

N =  1 + 3 M ( M +  1) (7) 

For convenience we introduce the occupancy 
factor r/, defined as the ratio of the actual beam- 
let radius to the maximum radius without over- 
lapping: 

2ao 
'~= At- ( 0 < ~ <  1) (8) 
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Fig. 2. Normalized free energy vs. N from Eq. (5), showing asymptotic behavior. Full lines are from Eq. (9). See also Tables 1, 3 
and 4. 

Then, using (7) and (8), we can derive from Eq. 
(5) our analytical result for large N (see Appendix 
A): 

4 C Un --' ~ ~ - - ln  3--1n ~ / + ~  (9) 

Fig. 2 plots Eq. (9) as full lines for the cases 
r/--0.5 and 1.0. Also plotted are direct calcula- 
tions from Eq. (5), listed in Table 1. The total 
number of beamlets ranges from seven to 4921, 
with N extended beyond the range of practical 
interest (see caveat in Section 2) to show how the 
results of (5) approach the asymptotic results of 
(9). This approach is indicated both in Fig. 2 and 
in the NUn columns in Table l, where the values 
tend toward the limits 0.1056 and 1.7531 obtained 
from (9). 

From (7) and (9), Un ~ 1/M 2 for large M. It is 
interesting to compare the sheet beam case, where 
instead of rings of beamlets one has continuous 
sheets of current. For M current sheets with initial 
widths equal to the gaps, i.e. ~/= 0.5, we found [6] 

2 2M 2 -  1 
U n (sheet beams) = 2 - M ( 4 M  2 _ 3)1/2 (10) 

and it turns out that for M > 3, to good accuracy, 
U n = 1/(4M2). See Table 2. 

It is not surprising that both cases have the 
same large-M proportionality. A circular array of 
round beamlets can expand radially inward and 
outward, releasing free electrostatic energy in the 
same way as in the sheet beam case. (The individ- 
ual beamlets also expand azimuthally, which helps 
to make the emittance growth isotropic.) 

4. Square arrays of beamlets 

Square arrays (4 x 4) have been proposed for 
HIF accelerator experiments [8]. However, square 
arrays produce what we call "configurational 
emittance growth" because their shape does not 
minimize the normalized free energy Un for a 
given number of beamlets. Increasing the number 
of beamlets for fixed ~/ would give limited im- 
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Table 1 
U. from Eq. (5) and NU, vs. total number of beamlets for sets of circular arrays 

213 

Rings Beamlets U n NU n U, NU n 
M N q = 1.0 q = 1.0 q = 0.5 q = 0.5 

1 7 0.011602 0.0812 0.207041 
2 19 0.006445 0.1224 0.088158 
3 37 0.003357 0.1242 0.046597 
4 61 0.001993 0.1216 0.028533 
5 91 0.001306 0.1189 0.019201 
6 127 0.000918 0.1166 0.013784 
7 169 0.000680 0.1149 0.010368 
8 217 0.000523 0.1135 0.008079 

10 331 0.000337 0.1115 0.005299 
12 469 0.000235 0.1102 0.003740 
15 721 0.000151 0.1089 0.002433 
20 1261 0.000085 0.1078 0.001391 
25 1951 0.000055 0.1071 0.000899 
30 2791 0.000038 0.1067 0.000628 
35 3781 0.000028 0.1065 0.000464 
40 4921 0.000022 1.1063 0.000356 

.4493 

.6750 

.7241 

.7405 

.7473 

.7506 

.7522 
1.7531 
1.7539 
1.7541 
1.7541 
1.7540 
1.7538 
1.7537 
1.7536 
1.7535 

provement in U,, because Un asymptotically ap- 
proaches a value obtained by integration over a 
uniform square distribution of  space charge. This 
is seen in Table 3 and Fig. 2, where Un was 
calculated from Eq. (5). The subdivision has been 
extended to large numbers to show that U. is 
asymptotically independent of N or r/, depending 
only on the overall shape. 

4, I. Emit tance  growth in square vs. round arrays 

For square arrays, Eq. (6a) gives the ratio of 
firial to initial emittance. Here we calculate the 
initial emittance, normalized with respect to a 
single unified round beam with the same mean 
square thermal velocity and current density as the 

Table 2 
U~ and M2U, vs. number M of rings or sheet beam segments; 
q=0 . 5  

M U,(beamlets) M 2 U. Un(sheets ) M 2 U n 

2 0.088158 0.353 0.05855 0.2342 
3 0.046597 0.419 0.02712 0.2441 
5 0.019201 0.480 0.00992 0.2480 

10 0.005299 0.530 0.00250 0.2495 
20 0.001391 0.556 0.00062 0.2499 
30 0.000628 0.566 0.00028 0.2499 
40 0.000356 0.570 0.00016 0.2500 

individual beamlets and the same total current as 
all N beamlets. The unified beam radius au is 
given by au 2 = Na2o and its emittance by Exu2 = 

2 2 NaoVx/4. From Section 2 the initial emittance 
2 = (a~/4 + ( ~ x ) ) V  x, (~ex) is easily is given by ~xi z 2. 

calculated for a square M x M array: ( 6 ~ ) =  
(M 2 -  1)ao2/3r/2. From these relationships we get 

2 N - 1  4 1 E ~:i 
with  N = m2,  N >~ 4 (11) 2 N 3qZ+N ~" xU 

Table 3 
U. vs. number of beamlets N in square array, with N extended 
to show asymptotic behavior 

N~ N v N Un, r / = l  Un, q = 0 . 5  

2 2 4 0.04286 0.41097 
3 3 9 0.03427 0.20944 
4 4 16 0.02992 0.13047 
5 5 25 0.02765 0.09257 
7 7 49 0.02552 0.05889 
9 9 81 0.02460 0.04485 

11 11 121 0.02412 0.03770 
13 13 169 0.02384 0.03357 
17 17 289 0.02355 0.02924 
23 23 529 0.02336 0.02647 
31 31 961 0.02325 0.02496 
43 42 1 8 4 9  0.02319 0.02408 
55 55 3025 0.02316 0.02371 
71 71 5 0 4 1  0.02315 0.02347 
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For round arrays of M rings we have a similar 
result: 

2 I N -  1 x~ 2 4 1 E'ri 

~ ' - =  ~ T )  ~ 2 ~ - ~ / ~ - r u  

with N =  1 + 3 M ( M +  1), N>~7 (12) 

2 _ 2 2 and the central beamlet is not In (12), E r = E x + ~'y 

counted as a ring. Eqs. (11) and (12) show that 
if the occupancy v/is reasonably close to unity, the 
initial emittance ratio as defined above is fairly 
insensitive to the number of  rows or rings. A 
simplified model is 

e i 1.15 (13) 
E u t/ 

Eqs. (6a) and (13) may be used to analyze the 
effect of combining a given set of beamlets or of 
subdividing a given current into a convenient 
number of units. In the case of  subdivision there 
are practical restrictions to keep in mind. As 
mentioned in Section 1 it may be difficult to 
maintain q if the beamlet sizes become too small. 
There is also a problem with the current density: 
smaller beamlets have a larger correction for emit- 
tance pressure, so that as N becomes large, the 
current density tends to be reduced. However, 
with the low temperature sources used in many 
HIF  designs, the above constant-current-density 
model works well for N up to around 100. There- 
fore we will use (13) in the following discussion. 

Let us assume that a given total current with 
a given radius is to be accelerated in one channel 
of the main accelerator and that this current is so 
large that it is necessary to divide it among at least 
four preaccelerator channels. With square or 
round arrays we have approximately 

. O Un~ 1/2 
eu'f ~ 1.15v/ 1 -t- -~ ~ 2 )  (14) 

With our cool initial beam assumption (strong 
tune depression) the Un term dominates in Eq. (14) 

Uq /2 and ef ~ ~ n  " 

Fig. 2 shows the influence of  the radial packing 
fraction q on U,. With square arrays, U. falls off 
rapidly from .the 2 × 2 value as N increases for the 
case v/= 0.5 but not for v/= 1.0. With v/= 0.5 a 
3 x 3 array cuts Un in half according to Table 3; 
the same result could be obtained with only seven 

Table 4 
U. vs. number of beamlets N in rectangular array with 2:1 
ratio 

N,. N v N U., q = l  Un, q=0.5  

2 1 2 0.31093 1.12186 
4 2 8 0.25754 0.48527 
6 3 18 0.24420 0.34702 
8 4 32 0.23921 0.29735 

10 5 50 0.23683 0.27413 
14 7 98 0.23472 0.25379 
18 9 162 0.23384 0.24539 
24 12 288 0.23325 0.23974 
30 15 450 0.23297 0.23713 
38 19 722 0.23278 0.23538 
48 24 1152 0.23267 0.23429 
60 30 1800 0.23260 0.23364 
76 38 2888 0.23255 0.23320 

100 50 5000 0.23252 0.23289 

beamlets in a circular (hexagonal) a r ray- -see  
Table 1. A 4 x 4 square array has about one-quar- 
ter the normalized free energy of  the 2 x 2 array 
and the maximum emittance growth is cut in half. 

It is more important to achieve large occupancy: 
if v/-~ 1, U, is reduced by a factor of  10 for the 
2 x 2 case. With v/~ 1.0 there is little further 
improvement from subdividing into 3 x 3 or 4 × 4 
arrays, because the square shape dominates the 
free energy. However, the seven-beamlet hexago- 
nal shape would reduce Un by an additional factor 
of 4. 

Other scenarios exist. For  example, one might 
suppose that the preaccelerated beamlets have 
predetermined currents and radii, so that the 
merged beam parameters vary with the number of  
beamlets. Alternatively, one might consider addi- 
tional mergings after further acceleration. There is 
not enough space here to discuss all these possi- 
bilities. 

5. Other shapes of arrays 

5.1. Rectangular array 

Fig. 2 includes the case of  rectangular arrays 
with a 2:1 ratio, from data shown in Table 4. This 
configuration has asymptotic normalized free en- 
ergy about 10 times larger than for the square 



O.A. Anderson / Fusion Engineering and Design 32-33 (1996) 209 217 215 

configuration, so that there is almost no benefit 
from subdividing or from increasing 0. A wide, 
thin array could be merged without much emit- 
tance growth by using a type of focusing that 
maintains a ribbon shape, but this would not be 
feasible for inertial fusion. 

5.2. Square array with rounded corners 

The ideal ring-type configuration of Section 3 is 
feasible for MFE sources and preaccelerators [5], 
but probably not for HIF where merging is done 
with septums, tending to produce square arrays. 
In such cases, omitting corner beamlets can be 
advantageous. For example, a 5 x 5 array with 
ideally thin septums ( t /~  1.0) would decrease its 
Un by a factor of 3.3 with the elimination of four 
beamlets. This case is included in Fig. 2, where 
removing the corners is seen to lower Un almost 
to the circular array region. 

It may be noted that, besides the major reduction 
of emittance from decreasing Un, there is also a 
minor reduction from the change in radius due to 
two nearly cancelling effects. The mean square 
radius must be increased by a factor 25/21 to keep 
the total current constant with fixed current density, 
while it is decreased by a factor 17/21 by the 
elimination of the corner beamlets. The net effect 
is to reduce X~ + y2 by a factor of 0.96, influencing 
both the initial composite emittance and the asymp- 
totic emittance. However, this is insignificant com- 
pared with the 0.30 U. factor which affects ~ 2 E x f -  6 xi' 
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Appendix A 

Here we derive Eq. (9), which gives the normal- 
ized free energy Un for a round array of beamlets 

arranged as in Fig. 1. We consider Eq. (5) term by 
term. 

Term 1 

Using Eq. (7), we have 

N - 1  _ 3 M 2 _ ~  M 3  (A1) 
4 4 ~4 

Term 2 

As noted under Eq. (5), U, is invariant to scale, 
so that we can choose ring spacing A r = 1. Then 
(8) becomes 

r/= 2a0 (A2) 

and 

a 0 =  
kZ/ 

Term 3 

Each ring has radius dm=mAr=m.  In our 
model (Fig. 1) each ring has 6m beamlets, so that 
in (3) 

2 M 12M2(M+ 1)2 
2(t~2) = ~m E 6re'm2= 

= l  4 N 

M2(1 + M -  1)2 

- I + M - I + 3  1M-Z 

using (7). 

ln(2(d 2)) = 2 In M +  2( . 1  

- -t 3M 2 

1 
= 2 1 n M +  

M 

From (3), (A2) and (7) 

N 2 N ln(2(d2) +_.~) -~ln aT =-~ 

1)  
2M ~ ~-"" 

' ) 
2M 2 t-... 

5 1 
6 M  2 t- 

Nln(2(dz))+2 In 1 + 8 - - ~  
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3 M 2 [  1 1 =Ulni+5 t 
1 (  5 1  ) N t/2 

x ~  1 - -F - - + . . .  
6 M  28(62  ) 

3 1 3 2 
= N In M + -~ M + -~ + ... + -~ ~I + . . .  

(A4) 

To evaluate this, we observe that the angle differ- 
ences between beamlets in rings m and n occur in 
multiples of  2rc/6mn and then twice use the iden- 
tity [9] 

= a 2" + b z' - 2a 'b" cos(s0) 

Term 4 

In the double sum we may specify that the 
beamlet numbers increase with increasing ring 
radius. Then beamlet j in ring m interacts with the 
other beamlets i < j  of  three classes, namely (a) 
the central beamlet (Fig. 1), (b) other beamlets in 
the same ring m and (c) beamlets in rings n of 
smaller radius than m. 

M 
Z Z In 62 = ~ (sum. + sum b + SUmc) (a5) 
j i < j  m=l 

We now evaluate these three sums. 

suma = 6m In m 2 = 12m In m (A6) 

s u m b = ~ 2  1n62 
j i <.j 

= 6m 1 6 " ~  ' In m2{sin2(~n~ ) 
p=l 

p~r 2 +[, 
= 6 m  ~' l n m 2 s i n  

p=l 

= 6 m  ( 6 m - l ) l n m + l n  H 2sin 
p=l 

With the identity [9] 

)-Ilj 2 sin = s  

we have finally 

SUmb = 6[(6m 2 -- m) In m + m ln(6m)l (A7) 

Next, using label k for beamlets in ring n and 
label p for beamlets in m, 

m -  1 6rn 6n 

sumc= Z Z Z ln62p (A8) 
n=l p~l k=l 

We have 

6m ~ ~ U I ~, In 62p = 6 In m 2 q- n 2 

=6p=,~ In [m]2" + n  12" 

= 6 ln(m 6m" - r/6mn) 2 

= 7 2 m n l n m + 1 2 1 n  1 -  

which is exact so far. The last term is 
- 12 (n /m)  6m~ + . . . . .  1212-~2 + O(10 6)] for 
m>/2.  After doing the sum over n from 1 to 
m -  1 in (A8), we have 

sum¢ = 616m2(m - 1) In m - 2 -  11 _ O(10-6)1 
(A9) 

for m >/2. Inserting (A6), (A7) and (A9) in (A5), 
we have for Term 4 of  Eq. (5) 

1 6 M [ ( 3 )  N 2 2  l n 6 2 -  ~ , 2  6 m 3 +  lnm 
j i < j  = 

l n 6 _ 2 - ~  . . . .  ] + m  

= _  l n M +  jv 

where 

9 1 N - 1  6M 
- - l n 6 -  2 -1'  

4 N  N N 

+ . . .  (A10) 

we used Eq. (7) for the ln6 term and 
summed ( m 3 +  m / 3 ) I n  m with the formula [10] 
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~ = l f ( x )  = f (x)  dx +~[ f (M)+ f(1)] 

1 
+ ~ [f(M) - f ( 1 ) ]  

1 
- - -  [ f " ( M )  - - f " ( 1 ) ]  + . - .  

720 

In the second te rm of  (A10) we find M4/N = 
(M2/3) (1 -M ' + ~ M - 2 + . . . ) ,  using Eq. (7) 

again.  Then  (A10) becomes,  in the limit o f  large 
M and  N, 

1 M + ~ M  2 N ~i~<j ln d2-° - N ln 

3 1 
~ M + ~ - l n  6 ( A l l )  

A d d i n g  (A1), (A3), (A4) and ( A l l )  then gives Eq. 
(9). 
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